Kambo contains hundreds of identified compounds, many of which are peptides. Peptides are small chains of amino acids. Many of the peptides contained in Kambo have been scientifically studied. Although they show potent anticancerous, antimicrobial, anti-inflammatory and immune-modulating properties, there has been very little new research conducted on these peptides. Virtually no human research has occurred, and no research has been conducted on the Kambo secretion as a whole.

Though science is unlikely to ever truly uncover what makes Kambo so magical, it can help validate the effects and inform the development of standardized safety best practices. With the rise in popularity of Kambo as an alternative healing modality, the pressing need for research about the risks and benefits of Kambo has become apparent.

Conducting scientific research is timely and expensive. Many organizations will not fund research on substances that are not patentable and profitable as drugs. While KamboFinder pledges to support scientific research on Kambo by donating 20% of it’s profits to independent studies, this is only a drop in the bucket of the resources needed to pioneer the field of Kambo science forward.

Join us in our commitment to support the scientific research of Kambo and to ensure safety, available access and evidence-based implementation of best practices.

Kambo Scientific Resources

You can learn more about the science of Kambo and it’s peptides in laymans terms by reading this article. If you like to get into the nitty-gritty science, below is a list of kambo-related scientific resources that you can read to enhance your knowledge.

If you wish to read the full-text versions, we recommend using Sci-Hub to access it for free. Click the button below, and paste the DOI of the article you wish to read. For example, for the citation below, you would enter 10.1073/pnas.89.22.10960 in the box.

Daly JW, Caceres J, Moni RW, et al. Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor. Proceedings of the National Academy of Sciences. 1992;89(22):10960-10963. doi:10.1073/pnas.89.22.10960

Kambo Peptides

Daly JW, Caceres J, Moni RW, et al. Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor. Proceedings of the National Academy of Sciences. 1992;89(22):10960-10963. doi:10.1073/pnas.89.22.10960

Erspamer V, Erspamer GF, Severini C, et al. Pharmacological studies of ‘sapo’ from the frog Phyllomedusa bicolor skin: A drug used by the Peruvian Matses Indians in shamanic hunting practices. Toxicon. 1993;31(9):1099-1111. doi:10.1016/0041-0101(93)90125-3

Erspamer V, Melchiorri P, Falconieri Erspamer G, Montecucchi PC, de Castiglione R. Phyllomedusa skin: A huge factory and store-house of a variety of active peptides. Peptides. 1985;6:7-12. doi:10.1016/0196-9781(85)90343-2

Jan M Keppel H. Kambo and its Multitude of Biological Effects: Adverse Events or Pharmacological Effects? Int Arch Clin Pharmacol. 2018;4(1). doi:10.23937/2572-3987.1510017

 Mignogna G, Severini C, Simmaco M, et al. Identification and characterization of two dermorphins from skin extracts of the Amazonian frog Phyllomedusa bicolor. FEBS Letters. 1992;302(2):151-154. doi:10.1016/0014-5793(92)80427-I

Erspamer V, Melchiorri P, Falconieri-Erspamer G, et al. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci U S A. 1989;86(13):5188-5192.

Amiche M, Ladram A, Nicolas P. A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides. 2008;29(11):2074-2082. doi:10.1016/j.peptides.2008.06.017

Anastasi A, Bertaccini G, Cei JM, De Caro G, Erspamer V, Impicciatore M. Structure and pharmacological actions of phyllocaerulein, a caerulein-like nonapeptide. Br J Pharmacol. 1969;37(1):198-206.

Chieli T, Bertazzoli C, Ferni G, Dell’Oro I, Capella C, Solcia E. Experimental toxicology of caerulein. Toxicology and Applied Pharmacology. 1972;23(3):480-491. doi:10.1016/0041-008X(72)90050-6

Zetler G. Caerulein and its analogues: Neuropharmacological properties. Peptides. 1985;6:33-46. doi:10.1016/0196-9781(85)90348-1

Zaninovic V, Gukovskaya AS, Gukovsky I, Mouria M, Pandol SJ. Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2000;279(4):G666-G676. doi:10.1152/ajpgi.2000.279.4.G666

Erspamer V, Erspamer GF, Improta G, Negri L, de Castiglione R. Sauvagine, a new polypeptide from Phyllomedusa sauvagei skin: Occurrence in various phyllomedusa species and pharmacological actions on rat blood pressure and diuresis. Naunyn-Schmiedeberg’s Arch Pharmacol. 1980;312(3):265-270. doi:10.1007/BF00499156

Pasinetti G, Govoni S, Battaini F, Locatelli P, Faccini E, Trabucchi M. Caerulein peripheral injection: A study on the correlation with dopaminergic metabolism. Pharmacological Research Communications. 1984;16(12):1175-1182. doi:10.1016/S0031-6989(84)80082-X

Hommer DW. The Effects of Ceruletide in Schizophrenia. Arch Gen Psychiatry. 1984;41(6):617. doi:10.1001/archpsyc.1984.01790170091010

Montecucchi PC, Henschen A. AMINO ACID COMPOSITION AND SEQUENCE ANALYSIS OF SAUVAGINE, A NEW ACTIVE PEPTIDE FROM THE SKIN OF PHYLLOMEDUSA SAWAGEI. International Journal of Peptide and Protein Research. 2009;18(2):113-120. doi:10.1111/j.1399-3011.1981.tb02047.x

Gonzalez N, Moody TW, Igarashi H, Ito T, Jensen RT. Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states: Current Opinion in Endocrinology, Diabetes and Obesity. 2008;15(1):58-64. doi:10.1097/MED.0b013e3282f3709b

Cline MA, Cofield SA, Tachibana T. Central litorin injection is associated with primary anorexigenic effects that coincide with activation of the magnocellular division of the paraventricular nucleus. Neuropeptides. 2010;44(3):247-252. doi:10.1016/j.npep.2009.12.015

Esakov AI, Ashmarin IP, Serova ON, et al. Litorin and litorin-albumin conjugate as effective regulators of body temperature in rats. Biomed Sci. 1990;1(6):610-612.

Anastasi A, Bertaccini G, Erspamer V. Pharmacological data on phyllokinin (bradykinyl-isoleucyl-tyrosine o-sulphate) and bradykinyl-isoleucyl-tyrosine. Br J Pharmacol Chemother. 1966;27(3):479-485.

Erspamer V, Erspamer GF, Cei JM. Active peptides in the skins of two hundred and thirty American amphibian species. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 1986;85(1):125-137. doi:10.1016/0742-8413(86)90063-0

Bartus RT, Elliott P, Hayward N, Dean R, McEwen EL, Fisher SK. Permeability of the blood brain barrier by the bradykinin agonist, RMP-7: Evidence for a sensitive, auto-regulated, receptor-mediated system. Immunopharmacology. 1996;33(1):270-278. doi:10.1016/0162-3109(96)00070-7

Ganjiwale AD, Cowsik SM. Three-dimensional structure of Phyllomedusin, a NK1 receptor agonist bound to dodecylphosphocholine micelles. Journal of Structural Biology. 2009;167(2):176-184. doi:10.1016/j.jsb.2009.04.008

Lippe C, Lobasso S, Cassano G, Bellantuono V, Ardizzone C. Actions of tachykinins on the ion transport across the frog skin. Peptides. 1998;19(8):1435-1438. doi:10.1016/S0196-9781(98)00080-1

Falconieri GE, Anastasi A, Cei JM. Pharmacological observations on phyllomedusin. Journal of Pharmacy and Pharmacology. 1970;22(6):466-467. doi:10.1111/j.2042-7158.1970.tb08567.x

Anastasi A, Falconieri Erspamer G. Occurrence of phyllomedusin, a physalaemin-like decapeptide, in the skin ofPhyllomedusa bicolor. Experientia. 1970;26(8):866-867. doi:10.1007/BF02114227

Mathison R, Solomos D. Interaction of tachykinins with an adrenergic receptor in the rat urinary bladder. European Journal of Pharmacology. 1985;109(3):327-333. doi:10.1016/0014-2999(85)90392-9

 Erspamer V. Biogenic Amines and Active Polypeptides of the Amphibian Skin. Annu Rev Pharmacol. 1971;11(1):327-350. doi:10.1146/annurev.pa.11.040171.001551

Broccardo M, Erspamer V, Falconieri Erspamer G, et al. Pharmacological data on dermorphins, a new class of potent opioid peptides from amphibian skin. Br J Pharmacol. 1981;73(3):625-631.

Negri L, Erspamer GF, Severini C, Potenza RL, Melchiorri P, Erspamer V. Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat. Proc Natl Acad Sci U S A. 1992;89(15):7203-7207.

Hesselink JMK, Schatman ME. Rediscovery of old drugs: the forgotten case of dermorphin for postoperative pain and palliation. J Pain Res. 2018;11:2991-2995. doi:10.2147/JPR.S186082

Basso N, Marcelli M, Ginaldi A, De Marco M. Intrathecal dermorphine in postoperative analgesia. Peptides. 1985;6:177-179. doi:10.1016/0196-9781(85)90371-7

Robinson MA, Guan F, McDonnell S, Uboh CE, Soma LR. Pharmacokinetics and pharmacodynamics of dermorphin in the horse. J vet Pharmacol Therap. 2015;38(4):321-329. doi:10.1111/jvp.12179

Castro J de L, Martucci MEP, Pereira HMG, de Sousa VP. A high throughput approach for determination of dermorphin in human urine using liquid chromatography-mass spectrometry for doping control purposes. J Mass Spectrom. 2020;55(10):e4593. doi:10.1002/jms.4593

Melchiorri P, Negri L. The dermorphin peptide family. General Pharmacology: The Vascular System. 1996;27(7):1099-1107. doi:10.1016/0306-3623(95)02149-3

Lacombe C, Cifuentes-Diaz C, Dunia I, Auber-Thomay M, Nicolas P, Amiche M. Peptide secretion in the cutaneous glands of South American tree frog Phyllomedusa bicolor: an ultrastructural study. European Journal of Cell Biology. 2000;79(9):631-641. doi:10.1078/0171-9335-00085

Negri L, Noviello V, Angelucci F. Behavioural effects of deltorphins in rats. European Journal of Pharmacology. 1991;209(3):163-168. doi:10.1016/0014-2999(91)90165-M

Longoni R, Spina L, Mulas A, et al. (D-Ala2)deltorphin II: D1-dependent stereotypies and stimulation of dopamine release in the nucleus accumbens. J Neurosci. 1991;11(6):1565-1576. doi:10.1523/JNEUROSCI.11-06-01565.1991

Mukhomedzyanov AV, Maslov LN, Ovchinnikov MV, et al. Effects of Deltorphin II and Its Retroenantio Analog on Cardiac Tolerance to Ischemia and Reperfusion. Bull Exp Biol Med. 2017;162(3):306-309. doi:10.1007/s10517-017-3601-9

 Maslov LN, Lishmanov YB, Oeltgen PR, et al. Comparative Analysis of the Cardioprotective Properties of Opioid Receptor Agonists in a Rat Model of Myocardial Infarction: THE ROLE OF OPIOIDS IN MYOCARDIAL PROTECTION. Academic Emergency Medicine. 2010;17(11):1239-1246. doi:10.1111/j.1553-2712.2010.00910.x

Broccardo M, Improta G. Antidiarrheal and colonic antipropulsive effects of spinal and supraspinal administration of the natural δ opioid receptor agonist, [D-Ala2]deltorphin II, in the rat. European Journal of Pharmacology. 1992;218(1):69-73. doi:10.1016/0014-2999(92)90148-W

Benamar K, Rawls SM, Geller EB, Adler MW. Intrahypothalamic injection of deltorphin-II alters body temperature in rats. Brain Research. 2004;1019(1-2):22-27. doi:10.1016/j.brainres.2004.05.041

Gyires K, Rónai AZ. Supraspinal delta- and mu-opioid receptors mediate gastric mucosal protection in the rat. J Pharmacol Exp Ther. 2001;297(3):1010-1015.

 Bartels EJH, Dekker D, Amiche M. Dermaseptins, Multifunctional Antimicrobial Peptides: A Review of Their Pharmacology, Effectivity, Mechanism of Action, and Possible Future Directions. Front Pharmacol. 2019;10. doi:10.3389/fphar.2019.01421

Chen T, Gagliardo R, Walker B, Zhou M, Shaw C. Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: Parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion. Peptides. 2005;26(12):2624-2628. doi:10.1016/j.peptides.2005.04.017

Leite JRSA, Silva LP, Rodrigues MIS, et al. Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides. 2005;26(4):565-573. doi:10.1016/j.peptides.2004.11.002

Pierre TN, Seon AA, Amiche M, Nicolas P. Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors: Phylloxin, a novel member of the dermaseptin family. European Journal of Biochemistry. 2000;267(2):370-378. doi:10.1046/j.1432-1327.2000.01012.x

Amiche M, Seon AA, Wroblewski H, Nicolas P. Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin genes family: Isolation of dermatoxin from frog skin. European Journal of Biochemistry. 2000;267(14):4583-4592. doi:10.1046/j.1432-1327.2000.01514.x

Ininhibitor P-. Dermaseptin-B8 | PAK4-Ininhibitor-pak4ininhibitor.com. Accessed March 27, 2021. https://www.pak4ininhibitor.com/2017/08/29/Dermaseptin_B8/

Nicolas P, El Amri C. The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2009;1788(8):1537-1550. doi:10.1016/j.bbamem.2008.09.006

Khademi M, Nazarian‐Firouzabadi F, Ismaili A, Shirzadian Khorramabad R. Targeting microbial pathogens by expression of new recombinant dermaseptin peptides in tobacco. Microbiologyopen. 2019;8(11). doi:10.1002/mbo3.837

Krugliak M, Feder R, Zolotarev VY, et al. Antimalarial Activities of Dermaseptin S4 Derivatives. Antimicrobial Agents and Chemotherapy. 2000;44(9):2442-2451. doi:10.1128/AAC.44.9.2442-2451.2000

 Kustanovich I, Shalev DE, Mikhlin M, Gaidukov L, Mor A. Structural Requirements for Potent Versus Selective Cytotoxicity for Antimicrobial Dermaseptin S4 Derivatives. Journal of Biological Chemistry. 2002;277(19):16941-16951. doi:10.1074/jbc.M111071200

Zairi A, Tangy F, Bouassida K, Hani K. Dermaseptins and Magainins: Antimicrobial Peptides from Frogs’ Skin—New Sources for a Promising Spermicides Microbicides—A Mini Review. Snyder L, ed. Journal of Biomedicine and Biotechnology. 2009;2009:452567. doi:10.1155/2009/452567

 Zairi A, Tangy F, Saadi S, Hani K. In vitro activity of dermaseptin S4 derivatives against genital infections pathogens. Regulatory Toxicology and Pharmacology. 2008;50(3):353-358. doi:10.1016/j.yrtph.2008.01.005

Strahilevitz J, Mor A, Nicolas P, Shai Y. Spectrum of Antimicrobial Activity and Assembly of Dermaseptin-b and Its Precursor Form in Phospholipid Membranes. Biochemistry. 1994;33(36):10951-10960. doi:10.1021/bi00202a014

Dos Santos C, Hamadat S, Le Saux K, et al. Studies of the antitumor mechanism of action of dermaseptin B2, a multifunctional cationic antimicrobial peptide, reveal a partial implication of cell surface glycosaminoglycans. PLoS ONE. 2017;12(8):e0182926. doi:10.1371/journal.pone.0182926

Antitumor and Angiostatic Activities of the Antimicrobial Peptide Dermaseptin B2. Accessed January 28, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447859/

Cao W, Zhou Y, Ma Y, Luo Q, Wei D. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli. Protein Expression and Purification. 2005;40(2):404-410. doi:10.1016/j.pep.2004.12.007

Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2008;1778(2):357-375. doi:10.1016/j.bbamem.2007.11.008

Yevtushenko DP, Misra S. Enhancing disease resistance in poplar through modification of its natural defense pathway. Plant Mol Biol. 2019;100(4-5):481-494. doi:10.1007/s11103-019-00874-2

Shams MV, Nazarian-Firouzabadi F, Ismaili A, Shirzadian-Khorramabad R. Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity. Mol Biotechnol. 2019;61(4):241-252. doi:10.1007/s12033-019-00153-x

Osusky M, Osuska L, Kay W, Misra S. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theor Appl Genet. 2005;111(4):711-722. doi:10.1007/s00122-005-2056-y

Vardy E, Sassano MF, Rennekamp AJ, et al. Single Amino Acid Variation Underlies Species-Specific Sensitivity to Amphibian Skin-Derived Opioid-like Peptides. Chemistry & Biology. 2015;22(6):764-775. doi:10.1016/j.chembiol.2015.05.012

Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2(10):790-802. doi:10.1038/nrd1197

  Brodie ED. Toxins and venoms. Current Biology. 2009;19(20):R931-R935. doi:10.1016/j.cub.2009.08.011

Erspamer V, Erspamer GF, Severini C, et al. Pharmacological studies of ‘sapo’ from the frog Phyllomedusa bicolor skin: A drug used by the Peruvian Matses Indians in shamanic hunting practices. Toxicon. 1993;31(9):1099-1111. doi:10.1016/0041-0101(93)90125-3

den Brave PS, Bruins E, Bronkhorst MWGA. Phyllomedusa bicolor skin secretion and the Kambô ritual. J Venom Anim Toxins Incl Trop Dis. 2014;20:40. doi:10.1186/1678-9199-20-40

Daly JW. Thirty years of discovering arthropod alkaloids in amphibian skin. J Nat Prod. 1998;61(1):162-172. doi:10.1021/np970460e

Erspamer V. Biogenic amines and active polypeptides of the amphibian skin. Annu Rev Pharmacol. 1971;11:327-350. doi:10.1146/annurev.pa.11.040171.001551

Xi X, Li B, Chen T, Kwok HF. A Review on Bradykinin-Related Peptides Isolated from Amphibian Skin Secretion. Toxins (Basel). 2015;7(3):951-970. doi:10.3390/toxins7030951

Kambo as a ritual

Byard RW. Is voluntary envenomation from the kambô ritual therapeutic or toxic? Forensic Sci Med Pathol. October 2019. doi:10.1007/s12024-019-00192-5

Daly JW, Caceres J, Moni RW, et al. Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor. Proceedings of the National Academy of Sciences. 1992;89(22):10960-10963. doi:10.1073/pnas.89.22.10960

Schmidt T, Reiche S, Hage C, Bermpohl F, Majic T. Acute and subacute psychoactive effects of Kambô, the secretion of the Amazonian Giant Maki Frog (Phyllomedusa bicolor): retrospective reports. Scientific Reports. 2020;10. doi:10.1038/s41598-020-78527-4

Hesselink JMK. Kambô: A Shamanic Medicine – Personal Testimonies. JOJCS. 2018;8(3). doi:10.19080/JOJCS.2018.08.555739

de Morais DR, Lanaro R, Barbosa IL, et al. Ayahuasca and Kambo intoxication after alternative natural therapy for depression, confirmed by mass spectrometry. Forensic Toxicol. 2018;36(1):212-221. doi:10.1007/s11419-017-0394-5

Case reports

Li K, Horng H, Lynch K, Smollin CG. Prolonged toxicity from Kambo cleansing ritual. Clinical Toxicology. 2018;56(11):1165-1166. doi:10.1080/15563650.2018.1457153

 Pogorzelska J, Łapiński TW. Toxic hepatitis caused by the excretions of the Phyllomedusa bicolor frog – a case report. Clin Exp Hepatol. 2017;3(1):33-34. doi:10.5114/ceh.2017.65228

Campodónico J, Aedo P, Montané MI, et al. [Severe hyponatremia secondary to Phyllomedusa bicolor (Kambó frog) poisoning. Report of one case]. Rev Med Chil. 2019;147(7):935-939. doi:10.4067/S0034-98872019000700935